
RECORD

25-50%
of developer time is

still spent debugging

82%
of software vendors have

experienced issues in
production related to a

previously seen but unfixed
test failure2

While Continuous Integration is now de facto
standard practice (growing from 70% in 2015
to 88% in 2019),1 software failures in test
remain a major impediment to delivery speed,
developer productivity, and software quality.	
 	

Key insights

LiveRecorder Data Sheet

 1 Cambridge Judge Business School MBA Project Study, 2020
2 Analyst firm study, Freeform Dynamics, 2018

LiveRecorder brings time travel debugging to CI, enabling C/C++, Go, and Java software teams
to easily and quickly diagnose the root cause of new regressions, legacy bugs, and flaky tests.

With LiveRecorder, software teams can:

•	 Fix bugs before they hit customers, by ensuring code quality and reducing defect slippage.

•	 Improve developer productivity, by accelerating bug-fix time and reducing the time it takes to get
changes into the pipeline.

Time travel debugging

Record. Replay. Resolve.

LiveRecorder captures a recording of an application failing under
test (however intermittently), making bugs 100% reproducible.

No time is wasted trying to reproduce test failures.

Expect a 2x to 5x slowdown against native execution. However,
you only need to record once to get complete “video footage” of
what happened, saving days or weeks of developer time.

Note: there’s also no need to record all tests in your suite, i.e. only
record the tests that are failing.

Integrate LiveRecorder into your test suite to automatically generate recordings of any failed test.

https://undo.io/the-cost-of-software-failures/
https://info.undo.io/software-reliability-report-optimizing-supplier-and-customer-relationship

REPLAY

Once a recording is generated, developers can jump from a test failure (or bug report) straight into a replay of the
recording that captured the bug.

LiveRecorder Data Sheet

One-click workflow

Launch a ready-to-go
debug session in

Visual Studio Code in
your browser

Visual Studio Code opens up at the point of the crash

LiveRecorder Data Sheet

Bugs can easily be located by navigating recordings back and forth to see what the code actually did, and analyze internal
program state at any point in time. Quickly trace program flow from bug manifestation all the way back to the root cause.

Time travel back in code execution and see what happened, when

•	 Replay the recording and inspect the complete state of the application – including the contents of all variables and
the heap.

•	 Use the full range of debugger functionality to navigate the application’s execution – stepping, running, breakpoints,
watchpoints, catchpoints, etc. – but in reverse as well as forward (a.k.a. reverse debugging).

RESOLVE

•	 Navigate through the application’s execution history in ways simply not possible in a conventional debugger,
e.g. spot a line of interest in a log file and jump inside a recording to the point in time and line of code when
the application emitted that log line, or jump to the time a variable changed value or the application made a
particular system call.

Watch reverse watchpoint in action

Recordings are self-contained, i.e. they include all the non-deterministic inputs to the application including file and network
inputs, signals, thread scheduling events, etc. This means that a recording contains all the information a developer needs in
order to see what the process did, and why, down to individual machine instructions if required.

Recordings are also portable, i.e. they can be replayed anytime anywhere (out of the original environment and on a different
CPU model).

Portable recordings

https://www.youtube.com/watch?v=gPkZ4qn31bw

Ideal for complex software systems

Records program environments with
multiple interacting processes. Multi-
process correlation reveals the order
in which processes and threads alter
data structures in shared memory,
and the order in which messages are
passed between microservices.

Recordings made within a container
or VM are replayable on a physical
machine, and vice versa.

Log Jump: pick a moment in time in
the log file and jump to that moment
in time in the recording.

Dynamic Logging: Log additional
variables at replay-time to cater for “I
wish we’d logged that other variable”
moments. See what the output would
have been without needing to re-run.

Handles complex multi-threaded
applications and those that use shared
memory and asynchronous I/O.

Thread-fuzzing option randomizes
thread execution to reveal
race conditions and other
multithreading defects (optional).

Use recordings to collaborate remotely and asynchronously, and accelerate bug-fix time. Share links to moments in time with
colleagues, share bookmarks, and add comments in recordings.

Asynchronous collaboration

LiveRecorder Data Sheet

Supports applications written in C/C++, Go, and Java, on Linux x86 Intel and AMD CPUs.

Supports applications running Linux kernel 3.10 or later. Compatible with all mainstream Linux distributions including:

•	 Red Hat Enterprise Linux and CentOS

•	 Fedora

•	 SUSE Linux Enterprise Server

•	 Ubuntu

System requirements

Hey, your module is

returning the wrong thing

here, take a look.
No, look at this time,

 you're calling it with the

wrong parameters.

Integrations

Integrates with any CI or Test
orchestration system, including:

•	 Jenkins

•	 CircleCI

•	 TeamCity

Integrates with any issue/ticketing
system, including:

•	 Jira

•	 GitHub

•	 Bugzilla

Seamless integration into your Linux
program and development workflow via
command-line recording, API control, and
IDE integrations (VS Code, IntelliJ IDEA,
Eclipse, Clion, GoLand, and Emacs).

Trusted by leaders

Undo is the time travel debugging company for Linux. We equip developers with the technology to understand complex code and fix
bugs faster. Developers spend far too much time figuring out what code actually does – either to find and fix bugs or to understand
other people’s code. With time travel debugging, developers can see exactly what the software did, and create better software faster.

Visit undo.io for more information.

LiveRecorder is trusted by the world’s leading enterprise software vendors.
Below are a handful of use cases.

About Undo

LiveRecorder Data Sheet

JUNIPER
Resolving complex issues on their

networking operating system
JunOS to support their enterprise

switches and routers

SAP
The main technology used to

identify and fix failures in the SAP
HANA database when they run it

through stress tests

SIEMENS
Used internally as part of hundreds of

engineers’ debugging workflow

ACTIAN
Used on their database engine based

on Ingres; recordings packaged as
Jenkins artifacts for engineers to

access specific failed tests

OBSERVE
Debugging multi process issues

in their stateful microservices
environment as they bring their

tools to market

http://undo.io

